Search results for "Analyte concentration"

showing 2 items of 2 documents

Quantitative colorimetric-imaging analysis of nickel in iron meteorites.

2011

A quantitative analytical imaging approach for determining the nickel content of metallic meteorites is proposed. The approach uses a digital image of a series of standard solutions of the nickel-dimethylglyoxime coloured chelate and a meteorite sample solution subjected to the same treatment as the nickel standards for quantitation. The image is processed with suitable software to assign a colour-dependent numerical value (analytical signal) to each standard. Such a value is directly proportional to the analyte concentration, which facilitates construction of a calibration graph where the value for the unknown sample can be interpolated to calculate the nickel content of the meteorite. The…

INGENIERIA DE LA CONSTRUCCIONbusiness.product_categoryCost effectivenessCalibration curveEconomicsAstronomyAnalytical chemistryImaging analysisStandard solutionCalibration graphsAnalytical ChemistryStandard solutionsDigital imageIron meteoritesSpectro-photometric methodSoftwareNickelCost benefit analysisNational Institutes of HealthProcess engineeringDigital cameraChemistryNumerical valuesMeteoroidsCamerasImageJChemistryAnalytical equipmentPublic domain softwaresSpectrophotometryMeteoriteMeasuring instrumentsColorimetrySpectrophotometersStandardsAnalyte concentrationSample (material)IronColorCost effectivenessArticleColorimetric analysisInstrumentation (computer programming)Digital imageCCDbusiness.industryAnalytical signalsColorimetric-imaging analysisDimethylglyoximeSample solutionVisible spectrophotometrybusinessInstrumentsMeteoritesTalanta
researchProduct

In vitro evaluation of poloxamer in situ forming gels for bedaquiline fumarate salt and pharmacokinetics following intramuscular injection in rats

2019

Graphical abstract

In situPO Propylene oxideIV IntravenousP338 Poloxamer 338lcsh:RS1-441Pharmaceutical Sciencechemistry.chemical_compoundn Sample sizeSD Standard deviationIM Intramuscularchemistry.chemical_classificationC0 Analyte plasma concentration at time zeroDoE Design of experimentsUV UltravioletPharmacology. TherapyK2.EDTA Potassium ethylenediaminetetraacetic acidLC–MS/MS Liquid chromatography-tandem mass spectrometryH&E Hematoxylin and eosintmax Sampling time to reach the maximum observed analyte plasma concentrationIn situ forming gelsCMC Critical micellar concentrationCmax Maximum observed analyte plasma concentrationIntramuscular injectionDN Dose normalizedGPT Gel point temperaturePLGA Poly-(DL-lactic-co-glycolic acid)TFA Trifluoroacetic acidCAN AcetonitrileATP Adenosine 5′ triphosphateSalt (chemistry)Polyethylene glycolPoloxamerArticlelcsh:Pharmacy and materia medicaPharmacokineticsIn vivoUHPLC Ultra-high performance liquid chromatographyPharmacokineticsAUClast Area under the analyte concentration versus time curve from time zero to the time of the last measurable (non-below quantification level) concentrationEO Ethylene oxideNMP N-methyl-2-pyrrolidoneComputingMethodologies_COMPUTERGRAPHICSAUC∞ Area under the analyte concentration vs time curve from time zero to infinite timeP407 Poloxamer 407In vitro releasePoloxamerCMT Critical micellar temperatureGel erosionIn vitrot1/2 Apparent terminal elimination half-lifechemistryMDR-TB Multi-drug resistant tuberculosisAUC80h Area under the analyte concentration versus time curve from time zero to 80 htlast Sampling time until the last measurable (non-below quantification level) analyte plasma concentrationMRM Multiple reaction monitoringNuclear chemistrySustained releaseInternational Journal of Pharmaceutics: X
researchProduct